Motivation

- Identification of Active Metabolic Pathways
 - Angles Between Subspaces
 - Correlation Distances between treatments

Data-Driven Stoichiometric and Kinetic Modeling of Complex Reaction Systems

- Department of Chemical and Biological Engineering & Systems Research Institute, *Tufts University*
- Advisor: Prof. Christos Georgakis

Modeling Approach

- Assumptions
 - 1st Step: Stoichiometric Identification
 - 2nd Step: Kinetic Model Construction

- Stoichiometric Modeling
 - Reaction Mechanism Unknown
 - Based on Concentration over Time Data
 - Approximation of Stoichiometric Models

- Kinetic Modeling
 - Start Point: Library of Kinetic Models
 - Parameter Estimation
 - Structural Iteration on the Model

Stoichiometric Identification Algorithm

- Data Matrix
- Determination of Independent Reaction Number: r
- Tests on Targets
- Accuracy Calculation (average RMSE)
- Models Selection

Assumptions

- Angles between the Target Stoichiometries and the OSS
- Angles between the Target Stoichiometries
- Positive Reaction Extents, through Rotation of the Matrices

Library of Kinetic Models

- Power Law Model
 - Several Chemical Systems
- Inhibition Terms
 - Michaelis Menten
 - Biological Systems
 - Langmuir-Hinshelwood
 - Heterogeneous Catalytic Reactions

Parameter Estimation

- Estimation of Reaction Orders and Kinetic Rate Constants

Software Tools:

- Matlab (Mathworks Inc.)
- JACOBIAN (Numerica Technology Inc.)
- CVODES (MIT PSE lab)

Conclusions

- Industrial Impact:
 - Significant Reduction of the Time to the Market for New Pharmaceuticals
 - Tighter Control of the Production Process
 - Implementation of PAT - FDA demands

- Biological Systems:
 - Generate Specific Cellular Responses
 - Reverse Engineer Protein-to-Protein Reaction Networks

Figures

- **Fig 1. Angles**
 - $\theta = \arccos \frac{t_1}{t_2}$
 - $\varphi = \arccos \frac{t_3}{t_4}$

- **Fig 2. Reaction Extents & Rotations**
 - Chart showing correlation distances between the subspaces.

- **Fig 3. Correlation Distances**
 - Chart illustrating the correlation distances between the subspaces for different treatments.
