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Reliability, return periods, and risk under nonstationarity
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Abstract Water resources design has widely used the average return period as a concept to inform man-
agement and communication of the risk of experiencing an exceedance event within a planning horizon.
Even though nonstationarity is often apparent, in practice hydrologic design often mistakenly assumes that
the probability of exceedance, p, is constant from year to year which leads to an average return period To

equal to 1/p; this expression is far more complex under nonstationarity. Even for stationary processes, the
common application of an average return period is problematic: it does not account for planning horizon, is
an average value that may not be representative of the time to the next flood, and is generally not applied
in other areas of water planning. We combine existing theoretical and empirical results from the literature
to provide the first general, comprehensive description of the probabilistic behavior of the return period
and reliability under nonstationarity. We show that under nonstationarity, the underlying distribution of the
return period exhibits a more complex shape than the exponential distribution under stationary conditions.
Using a nonstationary lognormal model, we document the increased complexity and challenges associated
with planning for future flood events over a planning horizon. We compare application of the average
return period with the more common concept of reliability and recommend replacing the average return
period with reliability as a more practical way to communicate event likelihood in both stationary and non-
stationary contexts.

1. Introduction

Traditional probabilistic approaches for defining risk, reliability, and return periods under stationary hydro-
logic conditions assume that extreme events arise from serially independent time series with a probability
distribution whose moments and parameters are fixed. Gumbel [1941] and Thomas [1948] defined a return
period of a flood as the interval between flood events, where an event is any streamflow discharge exceed-
ing a known threshold. In some studies, the return period has been defined as the (conditional) interval
between two flood events [Lloyd, 1970; Haan, 1977; Mays, 2001], whereas the more common definition of a
return period in practice is the unconditional waiting time until an exceedance event [Fuller, 1914; Gumbel,
1941; Fern�andez and Salas, 1999]. The unconditional return period does not assume a flood has occurred in
year 1. Though the two definitions are equivalent for stationary conditions, the conditional return period is
not sensitive to hydrologic persistence [Lloyd, 1970; Douglas et al., 2002], an attractive feature in drought
planning because droughts tend to exhibit persistence. The more commonly used unconditional definition
of a return period is useful for describing the recurrence of hydrologic events because it does not depend
on knowledge of a previous event, yet its value is sensitive to hydrologic persistence.

Consider the case of planning for a random future annual maximum extreme event X, where the design
quantile Xp is the threshold of exceedance, and determines whether a flood event with exceedance proba-
bility p, occurs in a given year. Assume the hydrologic event X is defined as the annual maximum stream-
flow which has a stationary probability distribution function (pdf) denoted by fx(x) and cumulative
distribution function (cdf) denoted by Fx(x). In the case where a structure is built to protect against an event
with an annual nonexceedance probability, 1 2 p 5 Fx(x), the design event for such a structure is computed
as simply the inverse of the cdf and equal to the quantile Xp. Under stationary conditions, if we assume that
the exceedance probability p, of annual floods is constant and that flood events are independent and iden-
tically distributed, then the return period, T, follows a geometric distribution with probability mass function
(pmf) given by

f ðtÞ5PðT5tÞ5ð12pÞt21p (1)
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where p is the annual exceedance probability. Similarly, for the continuous case, the random variable T fol-
lows an exponential pdf. In either case, the average return period is

E½T �5To5
X1
t51

tð12pÞt21p5
1
p

(2)

Similarly the variance of T is

Var T½ �5E T 2
� �

2E T½ �25
X1
t51

t2 � P T5t½ �2 1
p2 5

12p
p2 (3)

In the design of hydrologic infrastructure, the probability of failure over its lifetime or its associated system
reliability over a project lifetime is perhaps the most important piece of information an engineer can com-
municate to planners and the public. Prior to the 1983, Principles and Guidelines [Water Resources Council
(WRC), 1983], standard practice in the United States for designing hydraulic infrastructure had been to select
a design event, compute its average return period, and build the lowest cost structure. Such an approach
does not consider the risk of failure over the planning horizon as a decision variable, and instead reports
this risk of failure as more of a posterior calculation [Yen, 1970]. Since then, hydrologists and the Army Corps
of Engineers have adopted a probabilistic approach, or risk-based design [WRC, 1983], where a level of infra-
structure (i.e., protection) is selected based on minimizing the expected annual damage costs from a haz-
ard, i.e., a flood [United States Army Corps of Engineers, 1996]. More recently, Risk-Based Decision Making
(RBDM) has become a well-established methodology that determines appropriate levels of infrastructure
based on the expected damages avoided versus the cost of the infrastructure required [Tung, 2005; National
Research Council, 2000]. RBDM can be used in place of the traditional design storm approach to first select a
particular design event (a distinct To year event usually specified by regulation), and then select the neces-
sary infrastructure to protect against the flood event with that specified average return period. Rosner et al.
[2014] document how RBDM can be applied in a nonstationary setting.

We define risk of failure over a planning period (Riskn) here as in most introductory hydrology textbooks
[Bras, 1990; Viessman and Lewis, 2003; Mays, 2001] and hydrology handbooks [Tung, 1999; Stedinger et al.,
1993; Interagency Committee on Water Data (IAWCD), 1982; Chow, 1964], as the likelihood of experiencing at
least one event exceeding the design event over a given project life of n years:

Riskn512ð12pÞn (4)

Note that the risk of failure can be directly computed from the stationary average return period by replacing
p 5 1/To from (2) into (4). Yen [1970] points out that when the project lifetime (n years) is equal to the aver-
age return period (To) in equation (4), the project risk approaches a value of 0.63 as the project life nears
infinity. This result emphasizes an important link that exists between project life and its risk of failure under
stationary conditions.

A more modern definition of risk used in environmental and water resource planning involves both the
magnitude and frequency of the event [Krimsky and Golding, 1996], whereas the definition in (4) is only
indicative of the probability of failure over an n year period. For this reason, we recommend no longer using
the term risk when discussing the concept defined in equation (4). Instead, we recommend the term ‘‘reli-
ability’’ over a planning period (Reliabilityn), which is defined as the probability that a system will remain in a
satisfactory state [Hashimoto et al., 1982; Salas and Obeysekera, 2014] during its lifetime, i.e., that an exceed-
ance event will not occur within a project life of n years:

Reliabilityn5ð12pÞn (5)

The concept of reliability is not new to hydrology and is widely used in water supply planning [Hirsch, 1979;
Vogel, 1987; Harberg, 1997; Loucks et al., 2005] and many other engineering fields [Kottegoda and Rosso,
2008; Tung et al., 2006]. For stationary systems, the relationship between the reliability and average
return periods for n 5 25, 50, and 100 year planning horizons is illustrated in Figure 1 by simply substituting
p 5 1/To into (5).

Figure 1 illustrates that to achieve a reliability commensurate with other areas of design (i.e.,
Reliability> 0.9), over typical project lifetimes, the average return period of the design event must be in the
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hundreds of years. Most importantly,
Figure 1 illustrates that knowledge of
the average return period alone gives
little guidance regarding the likeli-
hood that a given project will perform
as expected. Under nonstationary
conditions, the exceedance probability
associated with the design event is
likely to change over time, creating
additional challenges in selecting a
suitable design event. Furthermore, a
prerequisite to the use of RBDM under
nonstationary conditions is that we
develop a complete understanding of
the impact of nonstationarity on tradi-
tional design metrics such as the
expected return period as well as the
reliability of a system over its planning
horizon.

Overall, our goal is to initiate a discussion as to how engineers can effectively communicate the risk of fail-
ure and reliability of hydrologic design over planning horizons for a range of possible conditions. This goal
is in line with a number of recent papers in the hydrologic science literature which discuss the existence
and mortality/immortality of stationarity as it relates to hydrologic design and extreme events [Cohn and
Lins, 2005; Milly et al., 2008; Montanari and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2014; Serinaldi,
2015; Serinaldi and Kilsby, 2015; Condon et al., 2015]. In the following sections, we provide detailed reason-
ing for the need to replace the use of the average return period with the concept of reliability over a plan-
ning horizon as a metric for design and more efficient means for communicating risk of failure. We show
this to be the case under stationary conditions (Figure 1), and even more dramatically under nonstationary
conditions. In addition, we document the general impact of nonstationarity on statements of risk of failure,
reliability, and the average return period using a simple, realistic, and representative two-parameter nonsta-
tionary lognormal (LN2) flood model. We begin by reviewing the past and current approaches to hydrologic
design under stationary and nonstationary conditions. Then we introduce the nonstationary LN2 flood
model and apply it to develop general relationships among risk of failure, reliability, and average return
periods introduced by previous investigators and demonstrate its use for hydrologists and planners. This
investigation is presented in the context of the growing societal interest in the impact of future nonstatio-
narities and the need for guidance in selecting a representative design event over a future planning hori-
zon. Finally, we conclude with recommendations concerning suitable statements of risk of failure, reliability,
and average return periods in both stationary and nonstationary settings.

2. Hydrologic Design Under Stationary Conditions

In the water resources literature, the concept of an average return period has many applications, with each
definition based on the type of hydrologic event described [see Fern�andez and Salas, 1999, and references
therein]. For example, several investigators have considered the behavior of average return periods for
hydrologic processes that exhibit persistence (long-range dependence) such as droughts and water supply
failures [Lloyd, 1970; Vogel, 1987; Fern�andez and Salas, 1999; Douglas et al., 2002], and taken steps to create
stochastic models that can reproduce such persistence [Efstratiadis et al., 2014]. We focus our attention on
flood events which do not tend to exhibit significant interannual persistence as do droughts and water sup-
ply failure.

The risk of failure defined by Yen [1970] and our preferred definition of reliability are essential metrics for
communicating the likelihood associated with a system failure during a project lifetime. Since society and
planners are concerned with knowing whether a system will remain undamaged within a given design
period, reliability is a more effective tool than the average return period for directly communicating the

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average Stationary Return Period, To (years)

R
el

ia
bi

lit
y

n = 25
n = 50
n = 100

Figure 1. Reliability of a stationary system which is designed on the basis of an
average return period To, corresponding to n 5 25, 50, and 100 years.
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likelihood that a flood exceeding the design event will occur over a planning horizon. Serinaldi [2015] and
Serinaldi and Kilsby [2015] relay a similar message, pointing out that risk of failure better describes this like-
lihood over a planning horizon because it summarizes the joint probability instead of the average probabil-
ity, and does not require computations involving sums to infinity (i.e., to times beyond the design life).

Figure 1 shows that systems designed on the basis of typical average return periods are not nearly as reli-
able as one might anticipate over a typical project life. According to Figure 1, system reliability is only 78%
when the design event is based on the 1% exceedance event (100 year flood) for n 5 25 years. Considering
that the design life of some public structures can be much longer than 25 years, and that reliability
decreases as project life increases for a given average return period, careful attention should be given to
how the system reliability of such structures is impacted by the planning horizon for structures which have
been designed on the basis of an average return period.

Other fields concerned with risk and hazard planning ensure a much higher reliability over typical planning
horizons than corresponding reliabilities associated with the 100 year flood so commonly used in hydro-
logic planning. Table 1 provides several examples, highlighting the differences between average return
periods and reliabilities associated with various disciplines concerned with hazard planning. For example,
earthquake design regulations suggest protection against a ‘‘less than 2% chance of failure (collapse)
occur[ring] in a 50-year project life’’ [National Earthquake Hazard Reduction Program (NEHRP), 2010]. This
level of protection corresponds to an earthquake magnitude with an average return period of 2475 years
[obtained by combining equations (2) and (5)]. By comparison, traditional flood frequency analysis which
often bases designs on an average return period of To 5 100 years corresponds to reliabilities of 78%, 61%,
and 37% over a range of n 5 25, 50, and 100 years, respectively.

In communicating flood risk, the ‘‘100 year flood’’ has a long history as a regulatory concept endorsed in the
1970s by the National Flood Insurance Program (NFIP) and FEMA in an effort to standardize flood risk. See
Pielke [1999] for a complete discussion of the many misconceptions regarding the ‘‘100 year flood’’ and its
influence on flood risk perception. Today the NFIP communicates flood risk to the public on their website
(available at https://www.floodsmart.gov/floodsmart/pages/flooding_flood_risks/defining_flood_risks.jsp)
by relating the likelihood of flood damage over a typical 30 year mortgage, and categorizing locations as
‘‘high-risk’’ (residences within the 100 year floodplain) and ‘‘moderate-to-low’’ risk (outside the 100 year
floodplain). Interestingly the ‘‘moderate-to-low risk’’ areas, which are not required to purchase flood insur-
ance, receive over one-third the payouts of disaster flood assistance or 20% of claims, begging the question
of how the category ‘‘low risk’’ was defined. As Salas [2013] notes, the omission of uncertainty from estimat-
ing the floodplain is in itself a compounding issue.

2.1. Should We Consider Replacing the Average Return Period With Concept of Reliability?
We are not the first researchers to question the use of the average return period as a design metric for
hydrologic purposes and for communication of extreme events [Fern�andez and Salas, 1999; Pielke, 1999;
Douglas et al., 2002; Cooley, 2013; Serinaldi, 2015; Serinaldi and Kilsby, 2015]. A summary of others’ points
and our own thoughts suggest that even under stationary conditions, using the average return period as a
design metric for hydrologic infrastructure and as a conceptual tool for communicating risk of failure is
problematic because (1) the shape of the geometric (discrete) and exponential (continuous) distribution
associated with the time to failure under stationary conditions have a very long right tail, thus the mean
time to failure (average return period) is a poor representation of the most likely time to failure; (2) the

Table 1. Reliabilities and Average Return Periods Associated With Important Events Associated With Several Disciplines Which Seek to
Protect Against Extreme Events

Discipline
Reliability for Typical n

Year Planning Period
Average Return
Period (Years) Citation

Earthquake (shaking) 98%, n 5 50 2475 NEHRP [2010]
Retirement portfolio planning 95%, n 5 30 585 Ameriks et al. [2001]and Stout and

Mitchell [2006]
Nuclear power plant accident 95%, n 5 21 409 United States National Nuclear Regulatory

Commission [1975]
National Flood Insurance 75%, n 5 30 105 FEMA
Flood design (infrastructure) 61%, n 5 50 100 Yen [1970]
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average return period is not explicitly tied to a planning horizon and thus is unable to characterize the likeli-
hood of an event occurring during a project lifetime. When hydrologic processes exhibit nonstationarity,
the probability of exceedance associated with the design event is changing over time, and thus the tradi-
tional formulae in equations (1–4) no longer hold. In this situation, the average return period may become
even less representative of the future system reliability than under stationary conditions as is shown in the
following sections.

3. Hydrologic Design Under Nonstationary Conditions

This work is in part motivated by the studies of Olsen et al. [1998], Cooley [2009], Parey et al. [2007, 2010],
and Salas and Obeysekera [2014], who introduced much of the mathematics needed to describe the risk of
failure, reliability, and average return periods in a nonstationary context. Interestingly, most of the key
developments extending hydrologic design indices to nonstationary conditions have appeared primarily in
the statistics and climate change literature, likely as a result of the attention and resources devoted to
understanding and characterizing climate change [Wigley, 1988; Katz and Brown, 1992; Katz, 2010; Olsen
et al., 1998; Parey et al., 2007, 2010; Cooley, 2009, 2013].

When a trend exists in annual maximum streamflow, the expressions for Riskn, Reliabilityn, and average
return period To presented in equations (1–4) are no longer correct because the probability of experiencing
a flood which exceeds a fixed design threshold is increasing (positive trend)/decreasing (negative trend).
Under stationary conditions, the return period follows a homogeneous geometric distribution as described
in equations (1) and (2), whereas under nonstationary conditions, the exceedance probability pt associated
with a particular annual maximum flood discharge changes every year. Under nonstationary conditions, the
average return period is no longer a sufficient statistic of the distribution of return periods. For example, p,
or the average return period 1/p, are both sufficient statistics for the geometric distribution in (1) because
each one is all that is needed (sufficient) to describe the pdf of return periods in a stationary context. How-
ever, under nonstationary conditions, knowledge of the average return period is no longer the only piece of
information needed to specify the complete distribution of the return period [Rootz�en and Katz, 2013]. Olsen
et al. [1998] and Salas and Obeysekera [2014] introduce expressions for the average return period for the
case where the exceedance probabilities of extreme events are increasing, such that p continuously
increases until reaching unity at some future time, t 5 tmax. From Cooley [2013] and others, the pmf of a
return period or waiting time distribution, for a nonstationary process, is given by

f ðtÞ5pt

Yt21

i51

ð12piÞ t51; 2; . . . tmax (6)

where t is the time until the first flood that exceeds the design event. An expression for the probability of
failure in year t, pt, can be derived for any distribution depending on the random variable of interest X. Note
that as expected for a stationary hydrologic process, equation (6) reduces to equation (1) because pt is con-
stant in every year. Cooley [2013] and Salas and Obeysekera [2014] show that the expected value of the
return period, T1 5 E[T] under nonstationary conditions is given by

T15E½T �5
Xtmax

t51

tf ðtÞ5
Xtmax

t51

tpt

Yt21

i51

ð12piÞ (7)

Here we denote the average return period under nonstationary conditions using the notation T1 to distin-
guish it from the average return period To under stationary conditions given in equation (2). Equation (7) is
a general form to compute T1; in cases with increasing exceedance probabilities, one hopes that the maxi-
mum time (tmax) is very far into the future, as it corresponds to experiencing annual floods in excess of
some important design threshold, with certainty (i.e., exceedance probability of unity). In the case of
decreasing exceedance probabilities (downward trends), tmax and the expected return period itself may be
both infinite. These are additional challenges for the practical application of applying a nonstationary return
period for future planning purposes. An equivalent numerically simplified formula from Cooley [2013] is

T15E½T �511
Xtmax

t51

Yt

i51

ð12piÞ (8)
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Parey et al. [2007, 2010] define a nonstationary return period as the number of years, T2, for which the
expected number of exceedance events is equal to 1, which can be solved numerically by computing the
upper limit of the summation in

15
XT2

t51

ð12ptÞ (9)

Cooley [2013] shows why (9) can be interpreted as the number of years in which the expected number of
exceedances is equal to unity. It is interesting to note that under stationary conditions, all three measures of
the expected time to failure are equal so that, To 5 T1 5 T2; however, this is not the case under nonstation-
ary conditions. Equations (6–9) can be applied to any variable or process which leads to a system failure
defined as the occurrence of an annual maximum streamflow (flood) above some level. All that is needed is
the nonstationary cdf of the variable of interest to compute its average return period using (6)–(9). In the
sections which follow, we provide examples of the application of (6)–(9) for the nonstationary lognormal
model summarized by Vogel et al. [2011], Prosdocimi et al. [2014], and others. We begin by using this model
because it offers the possibility to generalize the probabilistic behavior of floods under nonstationary condi-
tions, and because it is a parsimonious nonstationary model that reproduces the behavior of floods for a
large percentage of U.S. and U.K. river systems as shown by Vogel et al. [2011] and Prosdocimi et al. [2014],
respectively.

From Salas and Obeysekera [2014], the system reliability over a planning period (n) under nonstationary con-
ditions is given by

Reliabilityn5
Yn

i51

ð12piÞ (10)

Another metric defined by Stedinger and Crainiceanu [2000] is the average annual risk of failure, which is
simply the average of the annual exceedance probabilities over a planning period (n years):

AARðnÞ5 1
n

Xn

i51

pi (11)

Stedinger and Crainiceanu [2000] use (11) along with a damage function and discount rate, to compute the
discounted equivalent risks for four flood forecast models. Following Stedinger and Crainiceanu [2000], we
elect to introduce another measure of reliability which we term the annual average reliability:

Reliabilitya5
1
n

Xn

i51

12pið Þ (12)

The above review of average return periods, risk of failure, reliability over a planning horizon, and average
reliability over a planning horizon under both stationary and nonstationary conditions led us to question
which among the various indices would be most useful for communicating risk of failure under both sta-
tionary and nonstationary conditions. The following sections present our investigation of the average return
period and reliability under nonstationarity in the context of design, planning, and communicating risk of
floods.

4. Generalized Probabilistic Behavior of LN2 Model of Flood Hazard

4.1. LN2 Stationary Flood Hazard Model
Vogel and Wilson [1996] reviewed the pdfs which were commonly used in flood frequency analysis prior to
that date. While the generalized extreme value (GEV), log Pearson type III (LP3) and three-parameter lognor-
mal (LN3) are perhaps the most commonly used pdfs used for flood frequency analysis, the two-parameter
lognormal (LN2) model was found by Beard [1974] and others to provide an excellent parsimonious alterna-
tive to those models and has since been commonly applied in flood studies [Stedinger and Crainiceanu,
2000; Lund, 2002]. Note also that an LN2 model is a special case of the log Pearson type III distribution, the
mandated distribution for use in U.S. federal flood studies by Bulletin 17B [Interagency Committee on Water
Data (IAWCD), 1982]. Vogel et al. [2011] and Prosdocimi et al. [2014] document that a simple nonstationary
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LN2 model can provide an approximate yet general representation of the behavior of floods for rivers across
the United States and the United Kingdom, respectively, thus we employ that model here. Since our goal is
to explore the behavior of flood risk under nonstationary conditions, we begin with a two-parameter pdf,
which enables more general comparisons. Future studies should consider extending our results to nonsta-
tionary models corresponding to other two-parameter pdfs such as the Gumbel distribution as well as
some of the more common three-parameter models such as the GEV, LN3, and LP3 distributions.

Consider a stationary series of annual minima or maxima, X, which follows a two-parameter lognormal (LN2)
distribution where Y 5 ln(X), and the mean and standard deviation of y are given by

ly5ln
lxffiffiffiffiffiffiffiffiffiffiffiffi
11C2

x

p
 !

(13a)

ry5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð11C2

x Þ
q

(13b)

where lx is the mean of X, Cx is the coefficient of variation in real space Cx5rx=lx , and rx is the standard
deviation of X. The design event corresponding to an LN2 pdf is given by the quantile function

Xp5exp ðly1ZpryÞ (14)

where Zp is a standard normal variable with a corresponding exceedance probability p.

Under stationary conditions, the quantile function Xp can be evaluated for the event which has an average
return period To, by computing the fixed exceedance probability using (2) to obtain po 5 1/To. Under sta-
tionary conditions, all moments of both X and Y are assumed to be fixed over the planning horizon n.

4.2. Nonstationary LN2 Flood Model
We follow Vogel et al. [2011] and Prosdocimi et al. [2014] who show that a simple exponential model of X
versus time t captures the behavior of annual maximum floods at rivers in the United States and the United
Kingdom, respectively. Such a model is easily fit using ordinary least squares (OLS) regression to fit the sim-
ple log linear trend model to describe the relationship between y over time t

yt5lnðxtÞ5a1bt1et (15)

Note that we do not advocate the use of a trend model using time as a covariate, this model is only used
here for illustrative purposes. We do advocate use of meaningful covariates to reflect future changes in the
mean annual flood levels, such as covariates which reflect changes due to urbanization and/or climate.
Regardless of whether or not a significant trend was detected in the observed flood series at thousands of
rivers across the conterminous U.S., Vogel et al. [2011] found that the residuals in (15) were homoscedastic
and well approximated by a normal distribution, both important assumptions needed to perform further
statistical inference. Although their evaluations included detailed hypothesis tests concerning the normality
of regression model residuals and t tests on model slope coefficients as well as graphical evaluations of
homoscedasticity, their evaluations did not include a comprehensive assessment of the stochastic inde-
pendence of the model residuals or the flow series. Vogel et al. [2011] (see their appendix) concentrated
their analysis on the approximately 11% of rivers in the study which exhibited (obvious) positive trends.
When applying ordinary least squares (OLS) linear regression, the resulting fitted model yields the condi-
tional mean of the dependent variable so that the expectation of (15) yields an estimate of the conditional
mean of Y, denoted here as lyjt5a1bt, because the residual term is assumed to have zero mean. Impor-
tantly, this nonstationary trend model implies a reduction in r2

y as compared with stationary conditions,
with that reduction proportional to the degree of the trend. As shown in the supporting information, the
coefficient of variation of the nonstationary flood series is

Cxjt5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCx

211Þð12q2Þ
21

q
(16)

Note the two extreme cases of no trend in which case (16) reduces to Cxjt5Cx and a perfect trend model
with q 5 1, which leads to Cxjt50. Figure S1 (in supporting information) illustrates the relationship in (16)
and documents the small reduction in the coefficient of variation of the flood series X under typical
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nonstationary conditions. Since values of q are likely to be quite small in actual situations (i.e., q< 0.5), we
elected to assume Cxjt5Cx because we found this effect to be of minor importance to our overall findings.

Now if a hydrologist has a historic streamflow record of length N represented by xi for i 5 t1, . . ., tN years.
The trend model lyjt5a1bt becomes

lyjt5�y1b t2
t11tN

2

� �� �
(17)

where b is the slope of the trend that extends from t1 to tN, �y is simply the mean �y5 1
N

PN
t5t1

ln ðxtÞ, and the
annual maximum floods xt are measured for N years starting at t1.

The trend model in (17) can be used to calculate the conditional mean of Yt 5 ln(Xt) for any year in the future,
t> tN. We do not advocate the use of (17) for trend extrapolation, unless the user considers the use of physi-
cally meaningful covariates in the regression model and/or includes prediction intervals associated with such
extrapolations which are known to widen considerably when a model is used in ‘‘extrapolation mode.’’ (See
Serinaldi and Kilsby [2015] for examples and a discussion on the possible implications of such extrapolations for
a different model.) The use of OLS regression is quite powerful for trend extrapolation, because when the resid-
uals are approximately independent, homoscedastic, and normally distributed, analytical expressions are read-
ily available for computing both prediction intervals and the likelihood of type I and II errors. Such type I and II
probabilities may be readily integrated into a risk-based decision framework [Rosner et al., 2014] as probabilities
of overdesign and underdesign, respectively, and have been shown to be particularly important for under-
standing hydroclimatic change [see Vogel et al., 2013; Prosdocimi et al., 2014].

Since exceedance and nonexceedance values are no longer fixed under nonstationary conditions, the quan-
tile function under nonstationary conditions is obtained by substitution of the nonstationary mean lyjt , and
standard deviation ryjt in (17) and (S2), respectively, into the nonstationary quantile function: Xpjt5exp ðlyjt1

ZpryjtÞ which results in

Xpjt5exp y1bðt2tÞ1Zpt ry

ffiffiffiffiffiffiffiffiffiffiffiffi
12q2

ph i
(18)

See the supporting information for a derivation of the reduction in the variance of Y which is implied by the
nonstationary LN2 trend model.

To provide a more physically intuitive understanding of the impact of trends on flood quantiles under non-
stationary conditions, we employ the idea of magnification factor introduced by Vogel et al. [2011] and also
tested by Prosdocimi et al. [2014]. Vogel et al. [2011] define the magnification factor M as the ratio of the T
year flood at some future t 1 Dt period to the To year flood at time t. They further show that

M5
xpðt1DtÞ

xpðtÞ
5exp bDt½ � (19)

for the nonstationary LN2 model given here.

For a stationary LN2 variable, the fixed exceedance probability p5P X � xð Þ associated with a design event
Xp, is given as

p512U
ln ðXpÞ2ly

ry

� �
(20)

where the function U is the cdf for a standard normal variable. This is easily adapted under nonstationary
conditions, to compute the changing values of pt, the annual exceedance probability associated with expe-
riencing an event greater than the design event X*:

pt512U
ln ðX�Þ2lyjt

ryjt

� �
(21)

Here we denote the design event as X* to emphasize that it is a fixed value which must be chosen by the
design engineer under nonstationary conditions. Under stationary conditions, the design event is denoted
as Xp and is given by (14), so that only under stationary conditions is Xp 5 X*. Note that for the stationary
case (21) reduces to (20) and either can be used to compute both the average return period (equation (2))
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and reliability (equation (5)) under stationary conditions. Under nonstationary conditions, (21) can be
inserted into (7)–(9), and (10) to compute nonstationary average return periods and reliabilities correspond-
ing to a particular design event xp. Again, the nonstationary mean lyjt , and standard deviation ryjt in (21)
are given in (17) and (S3), respectively. We emphasize that under stationary or nonstationary conditions, the
choice of a design event is fixed, denoted here by X*. Selection and computation of X* is quite straightfor-
ward under stationary conditions, but under nonstationary conditions, with values of pt changing in every
year, its definition and computation are much more complex, as is discussed later in this paper.

5. Results

In the following sections, we explore the general behavior of the nonstationary LN2 model with the goal of
improving our understanding of the likelihood of future floods (increasing exceedance probabilities and
upward trends) associated with a particular design event X*, under nonstationary conditions. To enable gen-
eral comparisons, analyses, and conclusions, we make a number of simplifying assumptions including the
following: (1) the stationary coefficient of variation Cx is defined as that value at the end of the period of
streamflow record (t 5 tN), (2) Cx is assumed to be fixed throughout each planning horizon and equal to the
nonstationary coefficient of variation, so that Cxjt5Cx , and (3) the trend in the mean of the annual maximum
streamflow series is increasing over time. Now the behavior of floods under nonstationary conditions can
be generalized using the nonstationary LN2 model in (18) and (21) along with the magnification factor in
(19) and the general relationships between the moments in real and log space given in equation (13).

5.1. Investigation of Return Period Distribution Under Nonstationarity
If the field of flood planning and management is to continue to use the average return period as a tool for
communicating risk and informing infrastructure planning and design, it is important to understand the
behavior of the probability distribution of the return period under nonstationary conditions. In this section,
we examine the behavior of the pdf of the return period under nonstationary conditions for increasing
flood magnitudes. We assume a decadal magnification factor (Dt 5 10), where M 5 exp(10b), and thus a
value of M 5 1.02 implies a 2% increase in flow magnitude every 10 years for all design events, regardless
of their probability of exceedance.

We begin by exploring how nonstationarity affects the return period or the waiting time until experiencing
an event which exceeds the design event. The pdf of the return period under nonstationary conditions is
given in (6)with exceedance probability pt computed from (21). We assume that a design engineer has cho-
sen a design protection level based on the stationary LN2 flood frequency model using the quantile func-
tion in (14) with p 5 0.01, corresponding to a traditional ‘‘100 year’’ flood.

Of interest here is how a trend in the annual maximum floods impacts the pdf of the return period associ-
ated with the traditional 100 year design event. Figure 2 illustrates the pdf of the return period associated
with a 100 year (po 5 0.01) design event for the case when Cx 5 1 for several levels of nonstationarity, as
described by increasing values of the magnification factor M. Figure 2 illustrates that what was once an
exponential distribution for the return period associated with the 100 year flood under stationary conditions
becomes a very different probability distribution as the degree of nonstationarity increases.

Several conclusions can be drawn from Figure 2 concerning our experience of floods which exceed the tra-
ditional 100 year flood, under nonstationary conditions. Our experience of the likelihood of the return
period until a flood exceeds the design event changes dramatically both in terms of the shape of the pdf of
the return period and its expectation. Importantly, the distribution of the return period is no longer expo-
nential as is the case under stationary conditions (M 5 1). One implication is that if a structure is built for
today’s po 5 0.01 event and the future is not known with certainty (always the case), we do not know how
the return period distribution will evolve, i.e., the shape it will take. We also note from Figure 2 that regard-
less of the magnitude of a future trend, one can expect the po 5 0.01 event to occur much sooner than 100
years as the magnitude of the trend increases, as evidenced by M.

Of interest is the impact of nonstationarity on our experience of return period associated with design floods
of various magnitudes. Figure 3 illustrates the distribution of the return period associated with the traditional
To 5 10, 100, and 1000 year design events (p 5 0.1, 0.01, and 0.001) under nonstationarity conditions
described by M 5 1.14 and Cx 5 1. Under these nonstationary conditions, the average return period of the
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100 year event is shifted to �32 years,
and remarkably, the average return
period of the 1000 year flood is
reduced to approximately 66 years.
Interestingly, the expected return
period associated with the 10 year
flood is essentially unchanged (�9
years), suggesting that rarer events
may be more impacted by nonstatio-
narity than more common floods. We
conclude that the evolution of the
return period distribution for different
levels of nonstationarity (Figure 2) and
from common to rare events (Figure 3)
exhibits highly nonlinear behavior and
is likely to be impractically complicated
for purposes of design, planning, man-
agement, and risk communication.
These findings are consistent with
those of Serinaldi and Kilsby [2015].

5.2. The Behavior and Choice of the Design Flood Under Nonstationary Conditions
Figures 1–3 assume that the design flood is chosen under the assumption of stationary conditions. Under
nonstationary conditions, the design flood should be chosen in such a way as to account for the likelihood
of future floods. For example, if we are to estimate a design flood under nonstationary conditions, we must
employ equation (7) or (8) to describe the average return period T1, along with an appropriate nonstation-
ary flood frequency model. To determine the design event X* which will ensure a value of average return
period T1 under nonstationary conditions defined by M and Cx, one can combine equations (8) and (21) and
solve numerically for X* in the resulting expression:

T15E½T �511
Xtmax

t51

Yt

i51

U
ln ðX�Þ2lyji

ryji

� �� �
(22)

Equation (22) leads to an estimate of
the design event under nonstationary
conditions which will have an average
return period equal to T1; this is a use-
ful equation for design engineers who
need to size infrastructure based on
the ‘‘new’’ 100 year flood under nonsta-
tionary conditions. Clearly, solving for
the design event under nonstationary
conditions using (22) is far more com-
plex than under stationary conditions,
and it should be noted that in the case
of decreasing trends, if tmax is infinite, a
numerical solution is not even possible.
This is clearly problematic for practical
use of such a metric for planning. Fig-
ure 4 illustrates the behavior of the
probability distribution of the return
period associated with such a design
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Figure 2. Probability distribution function (pdf) of the return period associated
with a traditional 100 year flood for Cx 5 1 and a range of increasing trends
(M 5 1, 1.02, 1.14, 1.5). Note M 5 1 corresponds to stationary conditions.
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0.01, 0.001 events; Cx 5 1, M 5 1.14.
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event chosen so that average return
period T1 5 100 years in all cases,
regardless of the increasing degree
of nonstationarity as described by
increasing values of M. Figure 4 illus-
trates how the probability distribu-
tion of the return period associated
with a design event having average
return period of T1 5 100 years
changes shape from exponential in
the stationary case (M 5 1) to a
more normal or symmetrically
shaped (M 5 1.5) distribution. Inter-
estingly, we find that in the pres-
ence of an increasing trend, the
mean return period is actually more
representative of the waiting time
distribution and may be more repre-
sentative of when a failure will occur
than under stationary conditions.

For comparison purposes, we
examine whether this same behav-
ior in the return period distribution

is observed when flood flows arise from a nonstationary Gumbel distribution. Using the same log linear
trend model as described in the previous section, we derive pt for the Gumbel distribution allowing the
location parameter to vary with time with fixed Cx (as was described with the LN2 model). As in Figure 4,
Figure 5 fixes the average return period at 100 years to illustrate the impact on the return period distribu-
tion due to a 5% increase in magnitude of floods over 10 years (M 5 1.05), Cx 5 0.25, for both Gumbel and
LN2 flood flows. This investigation reveals that regardless of whether the flood flows are LN2 or Gumbel,
there is a similar and striking evolution from an exponential to a more symmetric distribution when an
exponential trend in the annual maximum flood series is present. Further, Figure 5 indicates that the
expected waiting time distribution may differ significantly depending on which probability distribution is
selected to represent flood flows, yet another element of complexity added under nonstationarity.

We are also interested in how physi-
cal hydrology of the river system
affects the probability distribution
of the return period under non-
stationary conditions. Here we use
Cx as a proxy for hydrologic variabil-
ity, where Cx< 1 represents a sys-
tem with relatively low variability as
compared with Cx> 1. Since rivers
with Cx< 1 are dominated by
changes in the mean, they are most
influenced by increasing trends as
shown in Figure 6 by the evolution
from Cx 5 0.25 to Cx 5 1.5 in each
plot figure, moving from top left (no
trend M 5 1) to bottom right (large
trend M 5 1.5).

Figures 4 and 5 illustrate that the
mean return period is more repre-
sentative of the time to the event
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Figure 4. The pdf of the return period associated with a design flood, chosen in such a
way as to ensure that the average return period is always 100 years, regardless of the
degree of nonstationarity, considering a range of trends (M 5 1 to M 5 1.5) given that
Cx 5 1.

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Return Period, t (yrs)

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n 

of
 R

et
ur

n 
Pe

ri
od

, f
(t

)

Cx=0.25 

LN2
Gumbel

Figure 5. Comparison of the pdf of the return period associated with a design flood,
which has a recurrence interval of 100 years, for M 5 1 stationary (solid lines) and
M 5 1.05 (dashed lines), Cx 5 0.25 assuming Gumbel flows (grey) and LN2 (black).
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under nonstationary conditions than under stationary conditions. Figure 6 illustrates that the shape of the
pdf of the return period also depends on the hydrologic variability as described by the value of Cx. We con-
clude from all of these investigations, that the pdf of the return period exhibits extremely complex behavior
under nonstationary conditions, with its shape depending on hydrologic variability, the level of nonstatio-
narity, and the magnitude of the design event of interest. Further examination of other commonly used
pdfs such as the LP3 and GEV models would likely reveal the same patterns as shown here with LN2 and
Gumbel.

5.3. Comparisons of Summary Measures of Average Return Period Under Nonstationarity
Recall that there are two different summary measures of the average return period which have been
advanced in the literature. The traditional definition is simply the average of the distribution of the return
period T1 given in (7) and (8). In addition, Parey et al. [2007, 2010] and Cooley [2013] introduced the return
period as the number of years, T2, for which the expected number of exceedance events is equal to 1, which
can be solved numerically using equation (9). In this section, we compare the behavior of these two differ-
ent summary measures of the time to failure, keeping in mind that under stationary conditions they are
equivalent. To accomplish this comparison, we use (14) to compute the design discharge Xp corresponding
to stationary conditions for p values corresponding to To 5 10, 100, and 1000 year events. Now each of
those Xp values are assumed to be the fixed design event X* in equation (21), which is then used for a par-
ticular Cx and M to determine the corresponding set of pt values for each design discharge. These values of
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Figure 6. The pdf of the return period associated with a design flood which is chosen to ensure that the average return period is always
100 years, regardless of the degree of nonstationarity or coefficient of variation. Curves show a range of Cx values (0.25–1.5); plot shows
trends increasing from (top left) M 5 1 to (bottom right) M 5 1.02, 1.14, 1.5.
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pt are in turn used to compute average return periods T1 using (8) and the return level T2 from (9). Figure 7
compares estimates of T1 (black lines) and T2 (grey lines) to the values of To corresponding to stationary
conditions and shows how the average return periods reduce as M increases from stationary (M 5 1) to an
extreme case (M 5 3) for Cx 5 0.5 (left) and Cx 5 2 (right). Each plot in Figure 7 illustrates average return peri-
ods under stationary conditions: To 5 10 year (solid), 100 year (dot-dash), and 1000 year (dashed) events in
the figure legend along with the average return periods T1 and T2. The average return periods associated
with the To year event undergo a dramatic reduction even with a small trend; for example, the original
To 5 100 year event, when Cx 5 0.5 (left plot) and M 5 1.1, becomes a T1 5 30 year event. From this compari-
son, we also note that though T1 and T2 differ in their assumptions, most significantly that the shift from
To ! T2 is more pronounced than To ! T1, the two measures behave similarly for the LN2 nonstationary
model over a range of magnification factors and design events characterized by To. Thus, our remaining
results only concentrate on use of the more common metric, the average return period T1.

5.4. The Relationship Between Reliability and Return Periods Under Nonstationary Conditions
Recall that under stationary conditions, there is a unique relationship between reliability, average
return period, and planning horizon as was illustrated in Figure 1. Of importance is that the results
illustrated in Figure 1 for stationary conditions are invariant to characteristics of the flood frequency
model and/or hydrologic characteristics of the river under consideration. In this section, we explore
the same relationships shown earlier in Figure 1 under nonstationary conditions by combining the
theoretical expressions for average return period and reliability introduced in earlier sections with the
nonstationary LN2 model.

We begin by investigating the behavior of the reliability index under nonstationary conditions in Figure 8.
Figure 8 illustrates reliabilities over a realistic range of planning horizons for a fixed average return period of
T1 5 100 years associated with the design event. Holding the average return period constant at T1 5 100,
under nonstationary conditions, is similar to the earlier results shown in Figures 4 and 5 and contrasts with
previous results where the design event was chosen using the stationary To 5 100 year event. Each plot in
Figure 8 represents a fixed trend (M 5 1, 1.02, 1.14, 1.5) and uses different lines to represent a range of Cx

values (0.25, 0.5, 1, 1.5). We choose to illustrate the impact of nonstationarity due to increasing trends on
reliability by fixing the average return period at 100 years in order to highlight that a structure must be built
larger (often unrealistically so) to achieve a particular reliability under nonstationary conditions. Such large
design events would involve considerable increases in design costs. As expected, regardless of whether
conditions are stationary or nonstationary, reliability decreases with planning horizon; and, when a trend is
present, in systems with less variability (low Cx), reliability is higher since the time to failure is more predict-
able (as was shown in Figure 6).
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Figure 7. The average return periods T1 (black) and T2 (grey) versus the decadal flood magnification factor M, for (left) Cx 5 0.5 and (right)
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Of considerable interest are the large increases in reliability associated with design events which are chosen
based on the average return period T1 under nonstationary conditions. One observes that in order to pro-
tect against a 100 year flood in a nonstationary setting, the chosen design event X* results in much higher
reliabilities than we are normally accustomed to under stationary conditions. The reason, as we observed
earlier, is that under nonstationary conditions the distribution of the time to the event of interest becomes
much more symmetric and peaked as M increases, i.e., the average return period becomes a better indicator
of the time to the next event as M becomes large. This results in a much higher system reliability for plan-
ning horizons less than the design average return period T1.

In Figures 9a and 9b, we compare reliability to the average return period T1, as we did in Figure 1, this time
considering trends (M 5 1.02, 1.14, 1.5). Several points arise from Figure 9, namely that the relationship
between reliability and average return period is now extremely complicated and can no longer be defined
by a single curve for a given n. The relationship between reliability and average return period under station-
ary conditions is invariant to the flood frequency model, whereas as is shown in Figure 9, the relationship
between T1 and reliability depends critically on the values of both M and Cx. Figure 9 also reiterates that for
a given average return period T1, reliability is higher for larger trends because the design event is larger. For
example, in the theoretical case illustrated in Figure 9a, design flows for the T1 5 100 year event are
x 5 0.20 m3/s for M 5 1 (stationary), and increase to x 5 0.23 m3/s for M 5 1.02, x 5 0.52 m3/s for M 5 1.14,
and x 5 5.45 m3/s for M 5 1.5; thus to design for a structure with a 100 year average return period under
nonstationary conditions, the required infrastructure will be much larger than under stationary conditions.

Note also in Figure 9 that knowledge of T1 alone is insufficient to provide a complete understanding of the
likelihood of future flood events, because the reliability associated designs corresponding to a particular
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Figure 8. Reliability over planning horizon for a fixed average recurrence interval T1 of 100 years; curves show a range of Cx 5 0.25, 0.5, 1,
1.5; each plot considers a fixed trend (M 5 1, 1.02, 1.14, 1.5).
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value of T1 vary dramatically, depending upon both M and Cx. Nevertheless, the relationships shown in Fig-
ure 9 can guide hydrologists and design engineers on the likelihood of failure and the expected return
period of a flood which will exceed the design flow under a range of nonstationary conditions. Both Figures
8 and 9 indicate that in order to secure high average return periods, we must consider much higher reliabil-
ities, which are likely to be unrealistic in practice. If instead we start with reliability as a way to determine
the size of the design event we are willing to protect against, then we can better communicate the likeli-
hood of failure under both stationary and nonstationary conditions.

6. Discussion and Summary

In this paper, we have drawn on existing theory and empirical results from the recent literature to provide
the first general, comprehensive analysis of the probabilistic behavior of the return period and reliability
under nonstationary conditions. Our results are a summary of old and new reasons for rethinking the use of
an average return period as a design and communication metric for flood hazard planning. Under assump-
tions of stationarity, the average return period does not adequately communicate the likelihood of experi-
encing a failure over a given project life, which is precisely the concern for engineers designing
infrastructure for flood management. We provide a theoretical example using a nonstationary lognormal
(LN2) distribution to demonstrate that when evidence of nonstationarity exists in historic data, the time to
failure distribution changes shape, the average return period is dramatically impacted, and the relationship
between average return period and reliability becomes more complex since reliability now depends on Cx

and the magnitude of the trend (M). From studying the time to failure distribution corresponding to a fixed
average return period, we note its evolution from a right-skewed exponential tail to a very peaked and
nearly symmetric pdf for larger values of M. A similar investigation with the Gumbel distribution reveals the
possible generality of this finding.

The illustrations presented here are general and can also be applied to decreasing trends to examine how
the behavior of the return period distribution changes and whether these alterations are consistent or
inconsistent with results presented here for the case of increasing trends. Further, the relationships here
should also be compared with those from other distributions such as the log Pearson type III distribution
(LP3) and the generalized extreme value (GEV) [Salas and Obeysekera, 2014; Serinaldi and Kilsby, 2015].

When assuming stationarity, the relationship between reliability, average return period, and planning hori-
zon is independent of the properties of the river under consideration and the resulting model of flood fre-
quency. However, under nonstationarity, the relationship is far more complex, so that our experience of the
reliability of flood management systems as well as the average return period associated with the next flood
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Figure 9. Reliability versus average return period T1, for n 5 50, (a) Cx 5 1; and the set of curves compare the stationary (M 5 1) case to a
set of increasing trends M 5 1.02, 1.14, 1.5; (b) trend is fixed at M 5 1.14; set of curves represent different values of Cx 5 0.25, 0.5, 1, 1.5.
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exceeding a critical design event depend on a number of additional considerations including the character-
istics of the underlying nonstationarity, the form of the probability distribution of the annual maximum
flood discharges, and the planning horizon. The complexity in the shape and behavior of the distribution of
the return period is further confounded by our inability to know and describe both the pdf and the trend in
future flood series. Our analysis has only considered a single model of nonstationary flood frequency, so
that considering other probabilistic models, as well as other models of trends in the mean, variance, and
skewness, would lead to considerable additional complications. In other words, even for one of the simplest
possible probabilistic models of nonstationarity, we have shown that our experience of the probability dis-
tribution of the return period is considerably more complex and unpredictable than its counterpart under
stationary conditions. The assumption of an exponential trend model of annual maximum floods combined
with the LN2 distribution, while reasonable, may not apply to all cases (nonstationarities) and thus we rec-
ognize that the same patterns may not result from different models. Thus, the complexity of the relation-
ship between the model parameters (M, Cx) and the design metrics (reliability and T1) grows in complexity
as one considers additional uncertainties associated with nonstationary behavior of future floods. Serinaldi
and Kilsby [2015] discuss how these increases in complexity add uncertainty when developing nonstation-
ary models, and thus suggests careful treatment of uncertainty characterization before employing such
models for design purposes.

Interestingly, for the case of increasing trends presented here, we showed that such trends actually improve
our ability to know the time to failure, because the distribution of return periods becomes much more
peaked and symmetric, so that the average return period becomes a better indicator of the time to an
(exceedance) event. Correspondingly, large trends tend to produce very large design events and associated
infrastructure costs, which are shown to be more reliable over a planning period than we normally experi-
ence under stationary conditions. In order to achieve high reliabilities under nonstationary conditions, we
must build structures for these larger design flows or accept a greater risk of failure, a decision that is now
further complicated by the uncertainty of future nonstationarities. We show that a unique relationship
between reliability and average return period exists for a given nonstationary flood frequency model but
without knowing the form of the nonstationary model with certainty, drawing inferences about the reliabil-
ity from the average return period becomes difficult.

Further, given that the average return period is not intrinsically tied to a planning horizon, one might make
a statement similar to the following in order to communicate event likelihood over a certain period of time:
‘‘we are 80% sure that this structure, built to withstand today’s 1,000-year event, will not experience at least
one exceedance event within the next 25 years.’’ From this confusing statement, it is difficult to discern the
meaning of the average return period and much more succinct to simply report the 80% reliability of the
design over the future 25 year planning horizon. If instead planners designed for a certain desired level of
reliability as is done in other fields concerned with planning under risk, then the statement could read: ‘‘we
are 80% confident that this structure will not fail in the next 25 years.’’ And, the associated average return
periods (assuming one would desire reliability> 80%) may be orders of magnitude higher as is illustrated in
this study; the need to avoid misrepresenting the risk of failure is one reason we recommend replacing the
average return period with the notion of reliability over planning horizon.

The consequences of misinterpreting the expected waiting time to an extreme event do not only impact
the physical system but also impact perceptions of individuals interacting with the floodplain. In the litera-
ture of flood risk communication, Lave and Lave [1991] report that floodplain residents generally expect to
be protected for a particular average return period and have little understanding of the true risk of flooding
during their lifetimes. Risk communication is itself a complex issue, as empirical research suggests that
obstacles to understanding risks from natural hazards often require strategies deeper than presenting facts,
such as using tactics to dispel heuristics and preconceived mistaken theories [see Bier, 2001, for a review].

7. Conclusions

We have shown how a parsimonious nonstationary lognormal model can be combined with recent research
on nonstationary return periods, risk, and reliability to obtain a very general understanding of the risk posed
by future floods. The probability distribution of the time to failure of a water resource system under nonsta-
tionary conditions no longer follows an exponential distribution as is the case under stationary conditions,
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with a mean return period equal to the inverse of the exceedance probability To 5 1/p. Our findings raise
numerous questions about our ability to understand and communicate the likelihood of future flood events
under nonstationary conditions. We recommend replacing the notion of an average return period with reli-
ability over a planning horizon, a metric used in almost all other realms of water resources planning and
many other fields that communicate long-term risk. Referring to a system’s reliability directly conveys two
pieces of information: the likelihood of no failure within a given number of years (i.e., over a planning hori-
zon) and the accepted level of reliability that is implicit in the design. In the context of climate variability
and change, and as cities become more urbanized, decisions on how to plan our water resource infrastruc-
ture become increasingly complex [Rootz�en and Katz, 2013; Obeysekera and Park, 2013; Rosner et al., 2014;
Condon et al., 2015]. Our evolving perception of design and adaptation is increasingly recognized by those
who study ‘‘sociohydrology’’ in the context of floods and propose models and frameworks for the feed-
backs/interactions between society and risks from the hydrologic environment [Di Baldassarre et al., 2013;
Viglione et al., 2014]. Future work will investigate how a modern risk-based decision analysis framework can
aid selection of an appropriate design event for hydrologic design under nonstationarity and explore new
tools for characterizing nonstationary probability distributions.
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