Broadband Optical Mammography

Pamela G. Anderson¹, Jana M. Kainerstorfer¹, Nishanth Krishnamurthy¹, Marc J. Homer², Angelo Sassaroli¹, Roger A. Graham³, and Sergio Fantini²

¹Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
²Tufts Medical Center, Department of Radiology, 800 Washington Street, Boston, MA 02111, USA
³Tufts Medical Center, Department of Surgery, 800 Washington Street, Boston, MA 02111, USA

Instrument Optical Breast Imaging

Using near-infrared light (600-1000 nm), breast maps can be created of deoxy-hemoglobin [Hb], oxy-hemoglobin [HbO], water [water], and lipid [lipid] concentrations based off of the absorption spectrum for these four chromophores. Hemoglobin saturation (SO₂) is an additional parameter that can be measured which is defined as the ratio of [HbO] to the total hemoglobin concentration [HbT].

Clinical Data

Optical mammograms of 26 cancer patients have been analyzed. The spectra through the breast are processed with a continuous-wave, diffusion based model and the scattering properties are fixed (scattering amplitude (@650 nm) = 10.8 cm⁻¹ and scattering power = 1.0) in order to obtain unique chromophore concentrations. Difference parameters were found for [HbT], [water], [lipid], and SO₂ by subtracting the average over the background pixels from the average over the tumor pixels. Shown below (figure 3) are maps of the distribution of the chromophores for a 72 year old cancer patient who had invasive ductal carcinoma with ductal carcinoma in situ also present, in two tumors located 1 cm apart in the breast. These tumors had diameters of 1.6 and 1.3 cm and a Nottingham Score of 8.

Spectral Imaging Instrument

The continuous-wave optical mammography instrument acquires data in transmission geometry every 2 mm in the x- and y- directions.

Correlation with Histopathology

The tumor grade, reported as the Nottingham Score (which is an integer value between 3 and 9), is a measure of the aggressiveness of the breast cancer. A linear relationship between the absolute concentrations of chromophores and the grade has been reported in [5] and a similar trend has been found with our difference parameters.

Acknowledgements

• We would like to thank Cate Mullen, RN, for her help recruiting the patients for this study
• This research is supported by the National Institutes of Health (Grant R01 CA154774).
• This material is also based upon work supported by the National Science Foundation Graduate Research Fellowship (NSF DGE-0806676). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Main Message: The key finding of this work is the significant reduction of SO₂ in breast cancer, a result that may be used to enhance the information content of optical mammograms to further aid in therapy monitoring capabilities.