Towards a new way of comparing Near Infrared Spectroscopy (NIRS) and fMRI data during functional imaging of the brain

A. Sassaroli*, Y. Tong*, B. B. Frederick#, P. F. Renshaw#, B. L. Ehrenberg*, and Sergio Fantini*

Tulane University, Department of Biomedical Engineering, Metairie, LA; McKinley Hospital, Shreveport, LA.

Experimental protocol & data analysis for concurrent fMRI-NIRS

Functional magnetic resonance imaging (fMRI) is performed on a 3 Tesla Siemens Trio whole body magnetic resonance scanner (Siemens Medical Systems, Erlangen, Germany). A quadrature birdcage probe, open at both ends and with a removable top section, is used to allow the optical fibers to be placed on the subject’s head without significant bending. After localization and shimming, a series of fMRI images are acquired. Image parameters are as follows: gradient-echo EPI, TR/TE=30/20ms, 64x64 image matrix, full k-space acquisition, FOV=220x220, 10 millimeter coronal slices (R/L resolution), 3mm thick, 0mm gap, with the slice stack centered on the motor strip. 120 time points are acquired after 12 dummy shots. Images are saved in DICOM format and processed using Brainvoyager QX (Brain Innovations B.V., Maastricht, The Netherlands). The update rate of fMRI data is 0.5 Hz. The optical experimental setup is a frequency-domain tissue imager (Imagent, ISS, Inc.,Champaign, Il) comprising sixteen laser sources at 690 nm and sixteen laser sources at 830 nm (average power about 1 mW) and four optical detectors (photomultipliers tubes, Hamamatsu Photonics RS92). The laser diodes are modulated at a frequency f=110 MHz, and are coupled to optical fibers 400 μm in core diameter and 10 m long. The subject (30 years old healthy male) lies motionless inside the magnet. One minute of baseline optical and fMRI data are acquired. Afterwards six cycles of 20 sec right hand tapping and 20 sec of rest are carried out by the subject while simultaneous NIRS and fMRI data are acquired. The optical data are filtered to cut off the lower (< 0.125 Hz) and higher frequencies (>1 Hz), averaged over the six cycles (folding average) and then analyzed by using modified Lambert-Beer law for the change of oxy and deoxy hemoglobin. Temporal trends and spatial mapping are obtained for both NIRS and fMRI.

Experimental setup

Comparison of fMRI BOLD and NIRS signals

Activation of motor cortex is monitored by using the change in oxygenated and deoxygenated hemoglobin concentration simultaneously measured in the cortex and motor strips. Temporal trends and spatial mapping are obtained for both NIRS and fMRI. NIRS and fMRI maps were compared by calculating the spatial correlation coefficient. 3-D correlation between these signals yields correlation maps that can be visualized in a spatially specific manner. Temporal correlation between NIRS and fMRI was calculated using cross-correlation between the NIRS and fMRI signals for each channel. The difference in the temporal dynamics of NIRS and fMRI signals was illustrated by subtracting the time course of fMRI signal from the NIRS signal.

While the standard BOLD signals calculated at two different locations (C15 and C11) do not show any noticeable difference (left figure), those calculated by using the photon probability distribution have different maxima, that correlate with the maxima of Δ[HbO].

Summary

We have presented preliminary results on simultaneous NIRS-EEG and NIRS-fMRI data acquisition for the study of functional imaging of the brain under hand tapping task. The comparison of NIRS-fMRI shows a good correlation between BOLD signal and both Δ[Hb] and Δ[HbO] measured with NIRS at the area of activation. A smaller activation on the side ipsilateral to the tapping hand is present in the fMRI maps and also on the optical data (data not shown). We have shown some preliminary results about a new way of comparing NIRS and fMRI data. We suggested that in fMRI data analysis the BOLD signal should not be calculated as a simple average of the activated voxels, but it should reflect the photon density probability distribution between source and detector. In the example shown above the BOLD signal calculated from two different locations scales as the change in Oxy-hemoglobin.

Acknowledgements

This work was supported by the National Science Foundation, Award No. BES-938480, and by the National Institutes of Health, Grant No. DA14178.

References