We present a method for the noninvasive determination of the size, position, and optical properties (absorption and reduced scattering coefficients) of tumors in the human breast. The tumor is first detected by frequency-domain optical mammography. It is then sized, located, and optically characterized by use of diffusion theory as a model for the propagation of near-infrared light in breast tissue. Our method assumes that the tumor is a spherical inhomogeneity embedded in an otherwise homogeneous tissue. We report the results obtained on a 55-year-old patient with a papillary cancer in the right breast. We found that the tumor absorbs and scatters near-infrared light more strongly than the surrounding healthy tissue. Our method has yielded a tumor diameter of 2.1 ± 0.2 cm, which is comparable with the actual size of 1.6 cm, determined after surgery. From the tumor absorption coefficients at two wavelengths (690 and 825 nm), we calculated the total hemoglobin concentration (40 ± 10 μM) and saturation (71 ± 9%) of the tumor. These results can provide the clinical examiner with more detailed information about breast lesions detected by frequency-domain optical mammography, thereby enhancing its potential for specificity. © 1998 Optical Society of America

OCIS codes: 170.3830, 300.0300, 300.1030, 290.0290.
tical properties of the tumor are described by its absorption (μ_a) and reduced scattering (μ'_s) coefficients, both in units of inverse centimeters. From the absorption coefficients at two wavelengths (690 and 825 nm), we calculate the hemoglobin concentration and saturation in the area of the lesion. This analysis provides a new approach that may result in a higher specificity of optical mammography.

2. Theory

Our theoretical approach to describe light propagation in breast tissue is based on diffusion theory. The tumor is modeled by a spherical inhomogeneity of diameter d embedded in an otherwise homogeneous tissue. We indicate the absorption and the reduced scattering coefficients of the background healthy tissue with μ_{a0} and μ_{s0}', respectively. The optical coefficients of the tumor are indicated by μ_{a}' and μ_{s}'. In this way, we section the breast tissue in two regions: one is the uniform background and the other is the spherical tumor. The analytical solution for the problem of a spherical photon density wave of angular frequency ω scattered by a spherical inhomogeneity embedded in a uniform, infinite, turbid medium has been given by Boas et al.10 The solution for the scattered photon density (U_{scatt}) out of the sphere is given by an infinite series whose terms contain the spherical harmonics $Y_{l,m}(\theta, \phi)$ and the spherical Bessel $[j_l(x)]$ and Neumann $[n_l(x)]$ functions:10

$$U_{\text{scatt}} = \sum_{l,m} A_{l,m} [j_l(k_0 r) + i n_l(k_0 r)] Y_{l,m}(\theta, \phi),$$

(1)

where $k_0 = (-(\nu \mu_{a0} + i \omega)/\nu D_0)^{1/2}$, ν is the speed of light in the medium, $D_0 = 1/(3\mu_{a0} + 3\mu_{s0}')$, and the coefficients $A_{l,m}$, determined by the boundary conditions, are given in Ref. 10. It is possible to generalize this solution to the slab geometry (which best describes the sampling configuration used in our light mammography apparatus) by use of the method of images11 (where one must introduce images for both the photon source and the sphere) and by application of extrapolated boundary conditions.12 This approach to the solution of the sphere-in-slab problem is implemented in the Photon Migration Imaging software13 that we used to perform the fits to our experimental data.

3. Instrument for Frequency-Domain Optical Mammography

The frequency-domain light mammography apparatus (LIMA) is described in detail in Ref. 6. This instrument operates in transmission mode, with the breast slightly compressed between two glass plates. The light sources are two laser diodes emitting at 690 and 825 nm, respectively. The average optical power on the breast is approximately 10 mW. The two laser beams are collimated and made collinear to illuminate a 3-mm2 spot on the breast. On the opposite side of the breast, the transmitted light is collected by an optical fiber (5 mm in diameter) that sends the optical signal to a photomultiplier tube (PMT) detector. The intensities of the laser diodes are modulated at a frequency of 110 MHz. We obtained the amplitude ac and the phase Φ of the photon density wave launched into the breast tissue by heterodyning and digital acquisition methods.14 A schematic diagram of the instrument and a vertical section of the compressed breast are shown in Fig. 1. The distance between the light source and the detector fiber is determined by the separation between the glass plates (L). This separation is $L = 4$ cm for the case reported in this paper. The light source and the detector fiber are scanned in tandem and are always kept collinear, facing each other. This optical mammography unit acquires a full image of the breast in approximately 3 min.

4. Methods and Results

Figures 2(a) and 2(b) show the optical mammograms at 690 and 825 nm, respectively, taken in the mediolateral projection on the right breast of a 55-year-old patient affected by breast cancer. A histological exam following optical mammography has shown that this tumor is a papillary cancer, whose size has been determined, after surgery, to be 1.6 cm. The points in Fig. 3(a) and Fig. 4(a) represent the frequency-domain data for ac, and the points in Fig. 3(b) and Fig. 4(b) represent the frequency-domain data for the phase. The data points are collected at 690 nm in Figs. 3(a) and 3(b) and at 825 nm in Figs. 4(a) and 4(b) along a particular line that includes the tumor position [the tumor is approximately centered
This particular line (y = 0) is indicated in the optical mammograms (Figs. 2(a) and 2(b)). The edge effects, which are due mainly to the decrease in the breast thickness as the scanner approaches the edge of the breast, cause a strong increase in the ac amplitude and a strong decrease in the phase in the initial and final part of the scanned line (see Figs. 3 and 4). In our previous research we reduced the edge effects by using the phase information to determine the breast thickness at each image pixel. The suppression of the edge effects resulted in an improved image contrast. Our edge-effect-corrected optical mammograms report a dimensionless parameter, that we call N, on a linear gray scale (see Fig. 2(a)). We obtained the background curves by superimposing a third-degree polynomial and four to six Gaussian peaks. Although there is little ambiguity in the determination of acbg(x), several curves appear to be reasonable choices for Φbg(x).

Fig. 2. (a) Filled triangles represent the experimental ac amplitude and (b) solid circles represent the phase at 690 nm measured along the scanned line indicated in Fig. 2(a). The tumor is centered at xtr = 4.9 cm. The continuous curves are the fits of a smooth function to the experimental data out of the tumor region. We considered four different phase curves (labeled 1–4 in (b)) to estimate the sensitivity of our method to a particular choice for the background phase.
To evaluate the sensitivity of our method to the choice of \(F_{\text{bgr}} \), we considered all four different curves that are shown in Figs. 3 and 4.

We observe that superficial inhomogeneities such as superficial blood vessels have a strong effect on the ac, and a negligible effect on the phase, for example, the evident negative bump at \(x = 8.3 \) cm in the ac traces does not have a visible corresponding feature in the phase traces.

For this reason, we treated the ac and phase background curves independently.

As a second step, we divide the measured ac by the background ac, and we subtract the background phase from the measured phase. The resulting normalized ac and phase show the effect of the tumor but not that of the edge effects. The normalized ac and phase are shown in Figs. 5(a) and 5(b) (690 nm) and in Figs. 6(a) and 6(b) (825 nm).

On the normalized data, we perform the fit with the analytical solution to the diffusion problem of light transmission through an infinite slab-shaped turbid medium that contains a spherical inhomogeneity. The resulting fits are shown by the continuous curves in Figs. 5 and 6, where the numbered fits correspond to the different phase background curves shown in Figs. 3(b) and 4(b). We performed the fit by simultaneously fitting the ac and phase data, by minimization of the global \(\chi^2 \). We took the ac error to be 3% and the phase error to be 0.2 deg. The fitted parameters are the tumor absorption \(\mu_a^{(t)} \) and reduced scattering coefficient \(\mu_s^{(t)} \), the tumor diameter \(d \), and the position of the tumor along the x axis \(x^{(t)} \) and z axis \(z^{(t)} \). The x axis is taken along the scanned line whereas the z axis is defined by the line joining the source and detector.

We considered four different phase curves labeled 5–8 in (b) to estimate the sensitivity of our method to a particular choice for the background phase.
Fig. 6. Normalized data at 825 nm and fits with the analytical solution for the sphere-in-slab problem (curves). (a) ac, solid triangles; (b) phase, solid circles. The four fits [numbered 5–8 in (a) and (b)] correspond to the four different background phase curves shown in Fig. 4(b). In (a), the ac data and fits numbered 5, 6, and 7 were shifted by 0.6, 0.4, and 0.2 a.u., respectively, for clarity. In (b), the phase data and fits numbered 5, 6, and 7 were shifted by 9, 6, and 3 deg, respectively, for clarity.

Fig. 1). Consequently, \(z^{(t)} \) gives the depth of the tumor because \(L/2 + z^{(t)} \) and \(L/2 - z^{(t)} \) are the distances between the tumor and the two compression glass plates (recall that the separation between the plates \(L = 4 \) cm in this case). By considering only one projection, i.e., only one particular orientation of the glass plates, we cannot distinguish the positive \(z \) side from the negative \(z \) side (source and detector are exchangeable for the reciprocity theorem). Therefore, we can measure only the absolute value \(|z^{(t)}| \).

For the optical coefficients of healthy breast tissue (the background medium), we assumed the literature values shown in Table 1 (Ref. 15). The index of refraction was taken to be 1.4 (Ref. 16), and we assumed no difference between the index of refraction of the tumor \([n^{(t)}] \) and that of healthy tissue \([n_0] \).

Table 2 reports the tumor size, coordinates, and optical coefficients recovered from the eight fits (four at 690 nm and four at 825 nm). Table 2 also shows the reduced \(\chi^2 \) (\(\chi^2 = \chi^2/60 \)) for each fit. These results indicate that this papillary cancer absorbs and scatters near-infrared light more strongly than the surrounding healthy tissue. A higher absorption of malignant tumors in vivo has also been reported by Fishkin et al.\(^{17} \). The recovered position and size of the tumor at the two wavelengths agree well. Nevertheless, we observe that the size of the tumor measured at the two wavelengths may be different if oxyhemoglobin and deoxyhemoglobin have different spatial distributions around the tumor. We obtained the overall results for the fitted parameters by performing a weighted average (with \(1/\chi^2 \) as the weights) of the results of the different fits. This average assigns a higher weight to the parameters that correspond to the better fits of our model to the data. We estimate the errors in the tumor parameters determined by the ambiguity in the choice of the phase background curve by comparing the recovered parameters in the eight fits. The choice of the background curve is a crucial step in our approach, and to some extent this choice is arbitrary. For this reason, it is relevant to estimate the sensitivity of the recovered parameters to the choice of the background curve. This estimate is given by the errors reported in Table 3. These errors indicate the precision of our method rather than its accuracy. We list the overall results for the tumor size, position, and optical properties in Table 3. The recovered tumor size (2.1 ± 0.2 cm) is comparable with the size measured after surgery (1.6 cm). One should not expect a perfect agreement because of the ambiguity in the size definition and because our method recovers the diameter of an assumed spherical tumor, which is clearly an idealization of the actual tumor (the pathologist reported the tumor size in three dimensions to be \(1.6 \times 1.5 \times 0.9 \) cm\(^3 \)). The recovered \(z \) coordinate of the tumor is essentially 0, indicating that the tumor should be located half way between the compression plates. However, in the optical mammogram taken on the same breast in the perpendicular view (cranio-caudal), the tumor appears to be closer to the detector, i.e., off center. The cranio-caudal projection does not allow us to specify exactly the value of \(|z^{(t)}| \) because of the geometric effects induced by breast compression, but we can estimate a value of \(|z^{(t)}| \sim 0.5-1.0 \) cm. This result indicates that our recovery of \(|z^{(t)}| \) is correct to within 0.5–1.0 cm. From the
absorption coefficients at the two wavelengths, we calculated the hemoglobin concentration and saturation in the tumor area, under the assumption that the absorption of light in the tumor is close to the edge of the image. An effective way to suppress the edge effects in the raw data, thus allowing the general applicability of our method, would be embedding the breast in a strongly scattering substance that matches the breast optical properties. This approach has already been proposed and tested, and it has the advantage that it would not require a redesign of the LIMA.

The third step of our method consists of fitting the data with the analytical solution for a spherical object in an infinite slab. Of course, the sphere-in-slab model is an abstraction of the real case. Although the infinite slab geometry provides a reasonable model for the compressed breast, the assumed spherical shape of the tumor can be considered only as a first approximation. Also, by sectioning the breast tissue in two parts, the healthy uniform background and the spherical lesion, we oversimplify the complexity of the actual spatial distribution of the optical properties in the breast. Consequently, our approach cannot be seen as a solution to the inverse problem, which would instead provide a three-dimensional distribution of the breast optical properties.

Using our simplified model, we are also not able to describe the internal morphology of the lesion. A strong assumption made in the fit is the homogeneity of the healthy tissue. This is not the case, and the tissue inhomogeneity has visible effects on the measured data. Nevertheless, the fits shown in Figs. 5 and 6 correctly reproduce the main features of the ac and phase traces, and the data fluctuations are due to the tissue inhomogeneity can be seen as a superimposed nonrandom noise.

Despite the above-mentioned limitations, we believe that our frequency-domain method provides some progress in the field of optical mammography because it demonstrates the feasibility of the noninvasive optical characterization of breast tumors in vivo. The N-parameter-based optical mammograms shown in Fig. 2 successfully detect the breast tumor, but they are incapable of giving information about its optical properties. With the additional analysis presented in this paper, we can determine the size, the position, the optical properties, and the hemoglobin concentration and saturation of the detected tumor. Recent studies have shown that the optical characterization can be achieved only for spheres having a diameter larger than approximately 1 cm (Refs. 25, 26). Even for smaller tumors, however, our method will still be capable of discerning absorbing from scattering lesions and to quantify the hemoglobin satu-

Table 2. Values of the Fitted Parameters for the Eight Fits Performed*

| Fit | \(\lambda \) (nm) | \(d \) (cm) | \(x^{(a)} \) (cm) | \(|x^{(a)}| \) (cm) | \(\mu_{s}^{(a)} \) (cm\(^{-1}\)) | \(\mu_{(a)}^{(u)} \) (cm\(^{-1}\)) | \(\chi^{2} \) |
|-----|-----------------|-----------|-----------------|-----------------|-----------------|-----------------|-------|
| 1 | 690 | 1.9 | 4.87 | 0.006 | 0.118 | 14.1 | 8.0 |
| 2 | 690 | 2.1 | 4.86 | 0.006 | 0.093 | 14.8 | 6.2 |
| 3 | 690 | 2.2 | 4.88 | 0.006 | 0.082 | 15.3 | 5.2 |
| 4 | 690 | 2.2 | 4.86 | 0.007 | 0.070 | 15.2 | 2.8 |
| 5 | 825 | 1.8 | 4.97 | 0.008 | 0.127 | 11.9 | 8.0 |
| 6 | 825 | 1.9 | 4.97 | 0.008 | 0.096 | 12.7 | 7.1 |
| 7 | 825 | 2.1 | 4.97 | 0.010 | 0.077 | 12.8 | 4.1 |
| 8 | 825 | 2.2 | 4.96 | 0.007 | 0.068 | 13.0 | 3.5 |

*The resulting curves of the simultaneous ac and phase fits are shown in Figs. 5 and 6.
ration. In fact, for tumors with $d < 1$ cm, it is still possible to determine the products $\mu'_a(d)$ and $\mu'_s(d)$. Because the hemoglobin saturation $[Y]^{[t]}$ depends only on the ratio $\mu'_a(\lambda_1)/\mu'_a(\lambda_2)$ (where λ_1 and λ_2 are the two wavelengths employed), the common factor d^3 cancels in the expression for $Y^{[t]}$, so that the hemoglobin saturation can be quantified.

In this preliminary application, we used values reported in the literature for the background optical properties μ'_a and μ'_s. We observe that this can be avoided, thus making our approach self-contained, by measuring the average optical properties of the breast in a position far from the tumor. Several methods have been employed successfully to quantify the average optical properties of tissues.\(^{11,17,20,27}\) The sensitivity of the recovered tumor optical properties on the assumed values for the background optical coefficients μ'_a and μ'_s is an important issue. To investigate this issue, we repeated the fit to the data at 690 nm [phase background 4 in Fig. 3(b)] for different combinations of μ'_a and μ'_s within the range of \textit{in vivo} values reported in the literature\(^{15,28}\) $0.02 \text{ cm}^{-1} \leq \mu'_a (690 \text{ nm}) \leq 0.04 \text{ cm}^{-1}$; $8 \text{ cm}^{-1} \leq \mu'_s (690 \text{ nm}) \leq 10 \text{ cm}^{-1}$. In this range of values of μ'_a and μ'_s, we found that the dependence of the recovered tumor optical coefficients $[\mu'_a(\lambda), \mu'_s(\lambda)]$ on the assumed background coefficients $[\mu'_a(\lambda), \mu'_s(\lambda)]$ is approximately described by the following relationships: $\mu'_a(\lambda) \approx 2 \mu'_a (690 \text{ nm}) - 0.005 \mu'_s (690 \text{ nm}) + 0.07 \text{ cm}^{-1}$, $\mu'_s(\lambda) \approx \mu'_s (690 \text{ nm}) + 3 \text{ cm}^{-1}$. The tumor always results in more absorbing and more scattering than the background tissue. If we denote the errors in μ'_a and μ'_s by $\Delta \mu'_a$ and $\Delta \mu'_s$, respectively, we can see that the corresponding errors in $\mu'_a(\lambda)$ and $\mu'_s(\lambda)$ are given by $\Delta \mu'_a(\lambda) = 2 \mu'_a (690 \text{ nm}) + 0.005 \Delta \mu'_s$, and $\Delta \mu'_s(\lambda) = \Delta \mu'_s (690 \text{ nm})$. These errors in μ'_a and μ'_s must be added to the errors reported in Table 3, which take into account only the uncertainty in the choice of the background phase curve. For example, a 10% error in the background optical coefficients would contribute an error of approximately 0.01 cm^{-1} in μ'_s and approximately 1 cm^{-1} in μ'_a.

To calculate the hemoglobin concentration and saturation in the tumor area, we assumed that hemoglobin is the only absorber in breast tissue, although it is known that water and lipids also have near-infrared absorption bands.\(^{29}\) Because our current prototype for frequency-domain optical mammography collects data at only two wavelengths, we made this assumption. A more accurate determination of the hemoglobin concentration would require the quantification of the water content, which can be obtained by employing more than two wavelengths\(^{30}\) or a full spectrum.\(^{15,29}\) However, we note that, because reported water concentrations in the breast are of the order of 20 M and can be as low as 5 M (Refs. 29, 30), the water absorption at our wavelengths gives a relatively small contribution ($\leq 0.002 \text{ cm}^{-1}$ at 690 nm, $\leq 0.010 \text{ cm}^{-1}$ at 825 nm) that falls within our experimental error in μ'_a.

6. Conclusion

We have presented a method for the noninvasive sizing and optical characterization of breast tumors \textit{in vivo}. This method is based on diffusion theory and on frequency-domain spectroscopy in the near infrared. In the case reported here, we found that the breast tumor (a papillary cancer) is more absorbing and more scattering than the healthy tissue. Its total hemoglobin concentration $[\text{Hb}]^{[t]}_{\text{tot}}$ is $40 \pm 10 \text{ M}$, whereas its hemoglobin saturation is $71 \pm 9 \%$. These results provide the clinical examiner with several parameters that characterize the tumor, namely the size, the absorption coefficient, the reduced scattering coefficient, the hemoglobin concentration, and the hemoglobin saturation. This information complements the detectability of breast lesions afforded by frequency-domain optical mammography, and it is expected to enhance the specificity of frequency-domain optical mammography.

We thank Enrico Gratton for useful discussions and W. Haensch for providing the pathology data. This research is supported by NIH grant CA57032 and by Whitaker—NIH grant RR10966. K. T. Moesta and P. M. Schlag acknowledge support from the Schott-Zeiss Scientific Foundation.

References and Notes

9. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess,

